17310456736

我国舰船综合电力推进系统行业发展的六大关键技术分析

发布时间:2021-01-20  来源:立鼎产业研究网  点击量: 1701 

从分系统和系统集成角度来看,舰船综合电力推进系统存在六大关键技术问题:

综合电力推进系统发展的关键技术问题


资料来源:CNKI

——高功率密度发电模块化技术

未来舰船发电分系统以大容量和高功率密度为主要特点,为满足未来的工程应用要求,主要需要解决中高压多相交流发电机整流集成发电技术、交直流电力集成多绕组发电机发电技术以及高功率密度和高品质舰船集成发电技术。

——高功率密度电动机及其变频调速技术

目前,先进感应电机(AIM)、永磁电机、超导电机被公认为高功率密度推进电机,感应电机比永磁电机或超导电机在技术上更加成熟,永磁电机比感应电机更适合舰船使用要求,超导电机则具有比永磁电机更高的功率密度和更好的静音性能。针对高功率密度电机,需要对其进行调速系统设计,如直流推进电动机的最优调速控制技术、多相永磁交流同步电动机的变频调速系统等。

高功率密度电动机特点及发展趋势


资料来源:CNKI

——智能化能量管理技术

未来舰船需要在大功率探测装置、高能武器(如电磁炮、激光武器)、其它大脉冲能源装置、重要设备(如舰载机电磁弹射装置)以及推进装置之间实现电能的快速切换,综合电力推进系统需要有足够的控制能以保持系统的稳定。当高能武器和探测设备需要使用大量电能时,需要对其它系统的用电进行限制(此时综合电力推进系统迅速将推进装置接近100%的能量切换到武器系统中,而后再切换回推进装置,切换的全部电能将可能高达100MW以上)。

智能化能量管理系统功能模块构成


资料来源:CNKI

——大容量电能的静止变换技术

实现大容量电能静止变换技术,关键是开发配套的新型电力电子器件。美国海军研究局使用氢氧化物、集成电路、电力半导体、电力电子技术对模块化电力电子标准组件进行设计和制造;采用宽带隙半导体材料(如碳化硅)代替硅,以提高电力电子标准组件的运行温度和电压。此外应特别加强从连续电能到脉冲电能静止变换器的开发与研究,并加强相应储能技术的研究。

——独立电力系统的电磁兼容技术

舰船电力设备分布密集,电力系统容量有限,系统内的电磁兼容问题十分突出,直接关系到系统和用电设备的可靠安全运行,这也是决定综合电力推进系统成败的关键。因此需要进行的关键技术研究包括:电力集成化模块中的电磁干扰、舰船直流电力系统电磁兼容、舰船交流电力系统电磁兼容、舰船壳体及电缆屏蔽网形成的地电网对电力系统电磁兼容性能的影响、整个综合电力推进系统电磁兼容性等。

——电力集成技术

综合电力推进系统的设计涉及到多个学科领域,是多种技术的综合应用,舰船的作战需求也对系统提供电能的要求不断提高,高品质和高功率密度是最关键的性能,因此需要对构成系统的各个模块及模块之间的集成技术进行研究,以达到系统的最优化设计。


决策支持

17310456736在线客服

扫描二维码,联系我们

微信扫码,联系我们

17310456736